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ABSTRACT 

The paper features the mathematical model of computing the second virial coefficient  

for HFC refrigerants+R744 on the basis of statistical thermodynamics. In the present 

paper we have developed the new model for calculation of second virial coefficient 

which yields favorable results in practical computations for a large number of 

components and within a relatively wide range of densities and temperatures. We 

consider rigid nonlinear molecules with the reference Lennard-Jones interaction 

potential and dipole and quadrupole moment. The constants necessary for the 

computation like the characteristic temperatures of rotation, electronic state etc. and the 

inertia moments are obtained analytically applying the knowledge of the atomic 

structure of the molecule. 

The second virial coefficients for mixtures are obtained using the one-fluid theory. For 

the mixtures we have developed the original mixing rules. We have developed also new 

mixing rules for dipole and quadrupole moments.  

In this work, the virial coefficients for the pure refrigerants R125, R32, R744 and 

mixtures R125+CO2, R32+CO2, measured by means of Burnett apparatus were 

analyzed. The experimental uncertainty in second virial coefficient was estimated to be 

± 2 cm3/mol by average. The analytical results are compared with the experimental data 

obtained by Burnett apparatus and they show a very good agreement. 
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1. INTRODUCTION 

In engineering practice in most cases the thermodynamic tables or diagrams or different 

empirical functions obtained from measurement are used (classical thermodynamics). 

Today, there are numerous equations of state (EOS) reported in the literature for describing 

the behaviour of fluids: Van der Waals EOS (VDW), Peng-Robinson (PR), Redlich-

Kwong EOS (RK), Soave EOS … [1]. However, these equations have exhibited some 

noticeable defects, such as poor agreement with experimental data at moderate densities. 

On the other side, we can use the complex equations of state with many constants 

(Benedict-Webb-Rubin [1] (BWR) EOS, Lee-Kessler [1] EOS, Benedict-Webb-Rubin-

Starling-Nishiumi [1] EOS (BWRSN), Jacobsen-Stewart [2] EOS (JS), Tillner-Roth-

Watanabe-Wagner [3] EOS (TRWW), Jacobsen-Lemmon [4] EOS (JL)…). These 

equations are more complicated. They have no insight into the microstructure of matter 

and poor agreement with experimental data outside the interpolation limits.  

 

2. COMPUTATION OF THERMODYNAMIC PROPERTIES OF THE STATE 

To calculate thermodynamic functions of state we applied  the canonical partition function 

[5]. Utilising the semi-classical formulation for the purpose of the canonical ensemble for 

the N indistinguishable molecules the partition function Z can be expressed as follows: 

N21N21Nf pd..pdpdrd..rdrd
kT
Hexp..

h!N
1Z

rrrrrr
⋅





−= ∫ ∫     (1) 

where f stands for the number of degrees of freedom of an individual molecule, H 

designates the Hamiltonian molecule system, vectors N21 r..r,r
rrr  describe the positions of N 

molecules and N21 p...p,p
rrr  momenta, k is the Boltzmann`s constant and h is the Planck`s 
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constant. The canonical ensemble of partition function for the system of  N  molecules can 

be expressed by: 

confnucelirrotvibtrans0 ZZZZZZZZZ =       (2) 

Thus the partition function Z is a product of terms of the ground state (0), the translation 

(trans), the vibration (vib), the rotation (rot), the internal rotation (ir),the influence of 

electrons excitation (el), the influence of nuclei excitation (nuc) and the influence of the 

intermolecular potential energy (conf). 

 

3. INFLUENCE OF LENNARD-JONES INTERMOLECULAR POTENTIAL 

3.1. Johnson-Zollweg-Gubbins (JZG) model [6]. 

For a real fluid the Johnson-Zollweg-Gubbins (1993) model based on molecular dynamic 

and Monte Carlo simulations with the Lennard-Jones intermolecular potential is possible 

to use. The MBWR EOS contains 32 linear parameters (xi) and one non-linear  parameter 

(γ). 

On this basis we can express configurational free energy Aconf: 

 ∑∑
==

+
ρ

=
6

1i
ii

8

1i

i*
i*

conf Gb
i

a
A ,       (3) 

where the coefficients ai, bi and Gi are presented in the literature [6]. The coefficients ai 

and bi are solely functions of  the reduced temperature T*, the coefficients Gi are functions 

of the reduced density ρ* and of the nonlinear adjustable parameter γ. 

ε
=

ε
=

σ
=ρ

N
A

A,kTT,
V

N conf*
conf

*
3

*     (4) 

( )2*expF γρ−= ,  γ=3       (5) 

where Aconf is reduced configurational free energy, σ and ε are Lennard-Jones parameters. 
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4. IMPACT OF ANISOTROPIC POTENTIALS ON THERMODYNAMIC 

FUNCTIONS OF STATE 

There are several methods to compute the influence of anisotropic potentials [5-12]. In the 

present paper those models were used which yielded favorable results in practical 

computations for a large number of components and within a relatively wide range of 

densities and temperatures.  

4.1 Lucas-Gubbins’s model (LG) [5,8]. 

The Lucas-Gubbins’s model deals with the perturbation expansion around the Lennard-

Jones’s intermolecular potential. The total intermolecular potential can be written as a sum 

of the Lennard-Jones’s intermolecular potential (LJ) and the potential, which takes into 

account also the orientation of a molecule in space (p): 

 ( ) ( ) ( )2112
p
1212

LJ
12211212 ,,ruru,,ru ωω+=ωω       (6) 

In Eq. (6),  r12  is the distance of centers of gravity between the molecules 1 and 2, ω1 and 

ω2 are orientations of both molecules in space, which may be expressed with Euler’s 

angles (φ,ϑ,χ). The reference part uLJ can be written also as a certain mean intermolecular 

energy at the distance r12: 

 
( ) ( )

( )

∫
∫

ωω

ωωωω
=ωω=

ωω
21

21211212
21121212

LJ
12 dd

dd,,ru
,,ruru

21

.
   (7) 

Now suppose that the sum of intermolecular potential energy is: 

( ) ( )2112
ji ji

p
ij12

LJ
ij

ji
ijconf ,,ruruuU ωω+== ∑ ∑∑

< <<       
(8) 

Using the perturbation expansion around the reference potential one can then write the 

configuration effect to the free energy as: 
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 TNk
A

TNk
A

TNk
A

TNk
A

TNk
A

BBBB

LJ

B

conf
λλλλλλ

+++=      (9) 

The free energy of Lennard-Jones’s fluid ALJ was calculated using the Johnson-Zolweg-

Gubbins’s (JZG) model [6]. 

We consider rigid nonlinear molecules [6] with the assumption that all anisotropic 

interactions are scalars. The multipole expansion is terminated at the octopole term. 

Intermolecular repulsion interaction is modelled by the Lennard-Jones r-12 law. The 

induction interaction are formulated in the isotropic polarizibility approximation. 

Intermolecular interactions are limited to the second-order term, cross terms between 

intemolecular interactions are not considered. The configurational free energy is then given 

by: 

First order terms: 

Inductive forces: 

( ) ( ) ( ) ( ) ( )
5

2
3

2ind 8JN66JN4A
σ

θραπ−
σ

µραπ−=λ      (10) 

Second order terms: 

Multipole forces: 

( ) ( )( ) ( )( ) ( )( ) multmultmultmultmultmultmultmult
224A123A2112AA

−λλ−λλ−λλ−λλ ++=  (11) 

( )( ) ( )6J
Tk

N
3
2112A 3

4

B

multmult

σ
µρπ

−=
−λλ         (12) 

( )( ) ( )8J
Tk

N123A 5

22

B

multmult

σ
θµρπ

−=
−λλ        (13) 

      ( )( ) ( )10J
Tk

N
5

14224A 7

4

B

multmult

σ
θρπ

−=
−λλ       (14) 
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If the intermolecular potential is restricted to the dipole-dipole term, Eq. (12) is the only 

contribution, while for quadrupolar (CO2, C2H6, etc.) molecules Eq. (14) is the only non 

vanishing term. For tetrahedral molecules (CH4, CCl4, CF4, etc.) the leading multipole term 

is the octopole-octopole and the corresponding contribution to free energy is: 

       ( )( ) ( )14J
Tk

N
875

19008336A 11

4

B

multmult

σ
Ωρπ

−=
−λλ      (15) 

Dispersion forces 

       ( ) ( ) ( )662L
Tk5

N1612J
Tk5

N32)022202(A 262

B

22
223

B

dispdisp
κσε

ρπ
−κεσ

ρπ
−=+

−λλ  (16) 

       ( ) ( )12J
Tk875
N10368)224(A 423

B

dispdisp
κεσ

ρπ
−=

−λλ      (17) 

Third order terms: 

       ( ) ( )( ) ( )( )
( )( ) ( )( )λλλλλλ

λλλλλλ−−λλ

+

++=

224;224;224A224;123;123A6

213;123;112A6224,112;112A3A

AA

AA
multmultmult

A  (18) 

         ( )( )
( )

( )11J
Tk25

N8213;123;112A 8

24

2
B

A
σ
θµρπ

=λλλ      (19) 

           ( )( )
( )

( )11J
Tk75

N8213;123;112A 8

24

2
B

A
σ
θµρπ

=λλλ     (20) 

          ( )( )
( )

( )13J
Tk35

N8224;123;123A 10

42

2
B

A
σ
θµρπ

=λλλ      (21) 

         ( )( )
( )

( )15J
Tk245

N144224;224;224A 12

6

2
B

A
σ
θρπ

=λλλ      (22) 

       ( ) ( )( ) ( )( )
( )( ) ( )( )λλλλλλ

λλλλλλ−−λλ

+

++=

224;224;224A224;123;123A3

224;123;123A3112,112;112AA

BB

BB
multmultmult

B   (23) 



 

8 

        ( )( )
( )

( )333;222K
Tk

N
5

14
135
32112;112;112A 3

6

2
B

22/13

B σ
µρ







 ππ

=λλλ    (24) 

        ( )( ) ( )
( )

( )344;233K
Tk
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        ( )( )
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N
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22
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42

2
B
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B σ
θµρ







 ππ

−=λλλ   (26) 

        ( )( ) ( )
( )

( )333;222K
Tk

N2002
2025
32224;224;224A 9

6

2
B

2
2/1

3

B σ
µρ

π
π

=λλλ   (27) 

When intermolecular potential is terminated at the dipole-dipole term the Eq. (24) is the 

only contributing term. Similarly, for quadrupolar fluids Eq. (27) is the only nonvanishing 

term. For tetrahedral molecules where the octopol-octopole potential is the lowest 

multipole term, the (AA
λλλ) is zero and we can express contribution to free energy: 

( ) ( )( )
( )

( )777,666K
Tk

N
737

3533
11375

221184336;336;336AA 15

6

2
B

22/13

BB σ
Ωρ







 ππ

−= λλλλλλ  (28) 

The structural properties of the Lennard-Jones potential are introduced via J, L integrals 

[5]. The J, K and L integrals are calculated by numerical integration over tabulated pair 

correlation functions. We calculated the J, K and L integrals with help of simple 

interpolation equations: 

Nicolas-Gubbins-Street-Tildesley (LG): interpolation limit: 6Tk5.0,2.1
V

N0 B
3

≤
ε

≤≤
σ

≤ , 

In thermodynamic perturbation theory from the properties of the real system we can obtain 

the Helmholtz free energy in powers of the perturbation potential (Eq. 9). When Eq. (9) is 

terminated at third-order term it is found that the results are good for moderate polar fluids 

but fail for strong dipoles (H2O, NH3…). Similar results have been found for quadrupole 

forces27. This is shown for a liquid state condition in Fig. Due to slow convergence of 
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Eq.(9) for strong multipole strengths the following simple Pade approximation for the free 

energy can be found in the literature6,28: 

      








−++=

λλ

λλλλλλ

A
A1

TNk
A

TNk
A

TNk
A

TNk
A

BBB

LJ

B

conf

     (29) 

 

5. MIXING RULES 

The thermodynamic properties of Lennard-Jones mixtures are obtained using the ome-fluid 

theory. The molecules interacting with Lennard-Jones potential have parameters σ and ε 

given by: 

3

,

3
αβ

βα
βα σψψ=σ ∑ 3

,

3
αβαβ

βα
βα σεψψ=εσ ∑ .     (30) 

            
2

ββαα
αβ

σ+σ
=σ , ββαααβ εε=ε .      (31) 

The dipole and quadrupole moments with the next are represented [13]: 

   2223

,

423
βααβαββ

βα
α µµεσψψ=µεσ ∑        (32) 

   2223

,

423
βααβαββ

βα
α θθεσψψ=θεσ ∑        (33) 

The formulation of octopole moment is new and is formulated on analogy of dipole and 

quadrupole moments. 

2223

,

423
βααβαββ

βα
α ΩΩεσψψ=Ωεσ ∑        (34) 

 

6. SECOND VIRIAL COEFFICIENTS OF POLAR SUBSTANCES 

Calculation of second virial coefficients for real substances is possible by the classical [16-

35] and statistical thermodynamics [15-25]. Classical thermodynamics has no insight into 
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the microstructure of the substance. But it allows the calculation of thermodynamics 

function of state with asistance of measurement or empirical equations. Statistical 

thermodynamics, on the other hand, calculates the properties of state on the basis  of 

molecular motions in a space, and on the basis of the intermolecular interactions.  

The virial equation of state is the expansion of the compressibility factor Zr along 

individual isotherms in terms of density around acoording to the next equation: 

          .........
V
C

V
B1

NkT
pVZ 2r ++==        (35) 

where B and C are second and third virial coefficient and the are defined as: 

         ,......
n
Z

!2
1C,

n
ZB

0n
2

r
2

0n

r

==









∂
∂

=






∂
∂

=       (36) 

The are properties of gas at n=0 and the do not depend on density, but only on temperature 

and, in mixtures, on composition. 

From the MBWR EOS for  LJ potential we with help of Eq. (3) obtain the next expression: 

     




 ++++σ=

−−−− 3*
5

2*
4

1*
3

2/1*
21

3
ALJ TxTxTxTxxNB    (37) 

The Bex is the contribution of multipole moments through Pade approximation equation. It 

is the complex function in strong dependence of temperature and mixture composition. The 

second virial coefficient is then expressed with the next equation: 

     
exBLJBB +=        (38) 
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7. EXPERIMENTAL SETUP 

7.1. Apparatus.  

It consists of two pressure vessels, the measurement chamber, VA, and the expansion 

chamber, VB, with a volume of approximately (70 and 35) cm3, respectively, and some 

auxiliary systems for filling and mixing the compounds in the Burnett vessels and for 

controlling and measuring the pressure and temperature. The four-valve arrangement 

enables the vessels VA and VB to be filled or emptied separately and, in addition to the 

expansion experiment, allows for the compounds in the Burnett vessels to be mixed using a 

magnetic recirculating pump. The measurement vessel is connected to a diaphragm-type 

differential pressure transducer (Ruska Model 2413), which is coupled to an electronic null 

indicator (Ruska Model 2416).  

The pressure is regulated by a precision pressure controller (Ruska Model 3981), while a 

digital pressure indicator (Ruska Model 7000) is used to measure pressures. Nitrogen is 

used to balance the sample gas pressure, and the nitrogen circuit consists of a reservoir, 

expansion vessels and pressure regulating systems. 

The vessels are immersed in a thermostatic bath filled with about 45 liters of an ethylene 

glycol and water mixture. The temperature of the bath is kept constant by means of a 

system with a PID device, piloted by a computer to which the temperature measurement 

system is also connected. The temperature control and acquisition system relies on two 

platinum resistance thermometers calibrated according to ITS 90 at the Istituto 

Metrologico G. Colonnetti (IMGC), of Turin. In particular, for temperature measurements, 

a Hart Scientific Pt 25 Ω resistance thermometer (mod. Hart 5680) is used, while for 

control purposes a Tersid Pt 100 Ω resistance thermometer is used. Both the thermometers 

are connected to a digital temperature indicator (Corradi, RP 7000). 
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8. RESULTS AND DISCUSSION 

We have carried out the calculations for pure refrigerants R125, R32 and R744 and 

refrigerant mixtures R125-R744 and R32-R744. The comparison of our calculations on the 

basis of statistical thermodynamics (JZG-LG model) with experimental results (Exp) are 

presented in tables 1-5. 

Tables 1, 2 and 4 feature the second virial coefficient for pure refrigerants R125, R32 and 

R744 as the function of relative deviation (RD) in the real gas region. The maximum 

relative deviation of the JZG-LG model from the TRWW model is less than 10% in 

comparison with experimental data.  

Tables 3 and 5 show the RD of the second virial coefficient for mixtures R125-R744 and 

R32-R744 for the real gas region. The maximum RD from the experimental data is less 

than 11% in comparison with the calculated data.  

 

CONCLUSION AND SUMMARY 

The paper presents the mathematical model for computation of the second virial coefficient 

in the fluid region. For the real fluid, the Johnson-Zollweg-Gubbins model based on 

molecular dynamic and Lennard-Jones simulations and modified Benedict-Webb-Rubin 

equation of state (MBWR) was applied. In this paper are multipolar and induction 

interactions calculated with help of quantum mechanical calculation of the intermolecular 

energy function with help of Lucas-Gubbins perturbation theory. The multipole expansion 

is terminated at the octopole term. The analytical results are compared with the 

experimental data and they show a very good agreement. 
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TABLES 

Table 1. Experimental results and values calculated with JZG-LG model [5-8] for R125. ρ1 
denotes initial density. 

R125 Texp (K) Bexp (cm3/mol) ρ1 (mol/dm3) B-LG RD 
1 303.15 -350.7 0.83230 -339.5 -0.03194 
2 303.15 -350.9 0.83492 -339.5 -0.03249 
3 323.16 -301 0.78813 -300.7 -0.001 
4 323.16 -299.8 1.29329 -297.4 -0.00801 
5 323.16 -299.5 1.47232 -296.5 -0.01002 
6 343.16 -259 3.23418 -260.9 0.007336 
7 343.16 -258.8 3.42777 -260.9 0.008114 
8 343.16 -259.3 3.13501 -260.9 0.00617 
9 363.14 -223.4 2.50984 -234 0.047449 

10 363.16 -222.5 3.20336 -233.7 0.050337 
 

Table 2. Experimental results and values calculated with JZG-LG model [5-8] for CO2. ρ1 
denotes initial density. 

CO2 Texp (K) Bexp (cm3/mol) ρ1 (mol/dm3) B-LG RD 
1 283.14 -136.2 2.24627 -142.6 0.04699 
2 283.14 -136.6 2.53439 -142.6 0.043924 
3 283.14 -136.4 2.57016 -142.6 0.045455 
4 303.15 -118.9 3.28011 -124.5 0.047098 
5 303.15 -118.1 3.1186 -124.5 0.054191 
6 303.15 -119.2 3.2741 -124.5 0.044463 
7 303.15 -118.9 3.3013 -124.5 0.047098 
8 313.15 -109.8 2.80884 -117.5 0.070128 
9 323.16 -103.6 2.81253 -110.7 0.068533 

10 323.16 -103.7 2.87813 -110.7 0.067502 
11 333.63 -95 2.49594 -104.4 0.098947 
12 333.63 -94.5 2.54126 -104.4 0.104762 
13 343.15 -88.7 2.34421 -98.9 0.114994 
14 343.15 -90.2 2.47549 -98.5 0.092018 
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Table 3. Experimental results and values calculated with JZG-LG model [5-8] for 
CO2+R125. x(CO2) and ρ1 denote the mole fraction of CO2 and the initial density, 
respectively. 

CO2+R125 Texp (K) x(CO2) Bexp (cm3/mol) ρ 1 (mol/dm3) B-LG RD 
1 323.15 0.4434 -196.2 1.88006 -205.7 0.04842 
2 323.15 0.6458 -156.8 3.04292 -165.3 0.054209 
3 323.15 0.7326 -141.1 1.78731 -147.6 0.046067 
4 323.15 0.7327 -141.2 1.71959 -147.6 0.045326 
5 323.15 0.8451 -121.5 2.59443 -124 0.020576 
6 323.15 0.857 -121.8 2.35075 -121.5 -0.00246 
7 323.15 0.8766 -118.9 2.37981 -117.3 -0.01346 
8 343.15 0.341 -188.9 1.65300 -192.3 0.017999 
9 343.15 0.3919 -177.6 1.98575 -191.6 0.078829 

10 343.15 0.6352 -134.7 1.26469 -141.4 0.04974 
11 343.15 0.7345 -122.9 1.83107 -130.4 0.061025 
12 363.15 0.3693 -155.5 1.67459 -175 0.125402 
13 363.15 0.4617 -142.2 1.84847 -160 0.125176 
14 363.15 0.6792 -110.4 1.43108 -125.4 0.13587 
15 363.15 0.7329 -103.1 1.85933 -116.1 0.126091 

 

Table 4. Experimental results and values calculated with JZG-LG model [5-8] for R32. ρ1 
denotes initial density. 

R32 Texp (K) Bexp (cm3/mol) ρ1 (mol/dm3) B-LG RD 
1 303.15 -284.3 0.7727 -277.5 -0.02392 
2 303.16 -283.5 0.93677 -277 -0.02293 
3 313.15 -257.5 1.29402 -260.4 0.011262 
4 313.16 -257.4 0.83116 -261.6 0.016317 
5 323.16 -238.7 1.85209 -245 0.026393 
6 323.16 -238.3 1.12925 -245 0.028116 
7 333.16 -220.8 0.95137 -238.8 0.081522 
8 343.16 -203.2 2.46554 -219.2 0.07874 
9 343.16 -202.3 2.68047 -219.2 0.083539 
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Table 5. Experimental results and values calculated with JZG-LG model [5-8] for 
R32+CO2. x(R32) and ρ1 denote the mole fraction of  R32 and the initial density, 
respectively. 

R32+CO2 Texp (K) x(R32) Bexp (cm3/mol) ρ 1 (mol/dm3) B-LG RD 
1 303.15 0.1667 -133 2.69036 -126.6 -0.04812 
2 303.15 0.3192 -151.5 2.38407 -150.2 -0.00858 
3 303.15 0.4576 -171.3 1.59220 -173.5 0.012843 
4 303.15 0.6462 -204 1.21316 -206.2 0.010784 
5 313.15 0.322 -142.1 2.26684 -141.9 -0.00141 
6 313.15 0.4628 -157.8 1.63915 -164.1 0.039924 
7 313.15 0.6312 -184.5 1.13067 -192.6 0.043902 
8 313.15 0.8029 -219.1 1.14312 -222.9 0.017344 
9 323.15 0.3108 -130.3 2.76090 -132.4 0.016117 

10 323.15 0.3487 -135 1.83778 -139.6 0.034074 
11 323.15 0.5709 -165 1.59316 -171.5 0.039394 
12 323.15 0.5866 -167.3 1.69782 -173.8 0.038852 
13 333.15 0.3222 -122 1.00300 -127 0.040984 
14 333.15 0.4489 -136.6 2.12435 -143 0.046852 
15 333.15 0.5791 -153.9 1.64310 -163.2 0.060429 
16 333.15 0.7362 -178.5 1.31673 -188.1 0.053782 
17 343.15 0.321 -110.5 1.74356 -119.2 0.078733 
18 343.15 0.4956 -132.5 1.41187 -142.9 0.078491 
19 343.15 0.6856 -157.6 0.91172 -171 0.085025 
20 343.15 0.7927 -161.4 1.38575 -179 0.109046 

 

Figure Captions: 

Fig. 1. Schematic view of the experimental apparatus. 

Legenda: 
 1 Nitrogen reservoir    2    Vacuum pump (Vacuubrand, mod. RZ2) 
 3 Precision pressure controller (Ruska, mod. 3981) 4    Gas lubricated dead weight gage (Ruska, mod. 2465) 
 5 Vibr. cylinder pressure gage (Ruska, mod. 6220) 6    Digital temperature indicator (Corradi, RP 7000) 
 7 Electronic null indicator (Ruska, mod. 2416) 8    Stirrer 
 9 Heater     10  Cooling coil connected with an auxiliary bath 
11 Differential press. transducer (Ruska, mod. 2413) 12  Measurement chamber (VA) 
13 Expansion chamber (VB)   14  Magnetic recirculating pump 
15 Pt resistance thermometer (Tersid, Pt 100) 16  Vacuum pump for VB (Vacuubrand, mod. RZ2) 
17 Charging fluid reservoir   18  Pt resistance thermometer (Hart Scientific, Pt 25) 
19 Digital pressure indicator (Ruska, mod. 7000) V1,V2,V3,V4  Constant volume valves 
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FIGURES 

 
Figure 1. Schematic view of the experimental apparatus. 

 
 


